f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.

f(x)=(12x^2)(e^2x) - 14, so using the chain rule f'(x)=(24x)(e^2x) + (12x^2)(2e^2x).To find the turning points set f'(x)=0, so (24x)(e^2x) + (24x^2)(e^2x) = 0. Thus (24xe^2x)(1+x)=0. Thus x=0 or x=-1.

CH
Answered by Charlotte H. Maths tutor

3246 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to integrate ∫ xlnx dx


If f(x) = sin(2x)/(x^2) find f'(x)


Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning