f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.

f(x)=(12x^2)(e^2x) - 14, so using the chain rule f'(x)=(24x)(e^2x) + (12x^2)(2e^2x).To find the turning points set f'(x)=0, so (24x)(e^2x) + (24x^2)(e^2x) = 0. Thus (24xe^2x)(1+x)=0. Thus x=0 or x=-1.

CH
Answered by Charlotte H. Maths tutor

3343 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y = x^4 - 8x^2 + 60x + 7. What is the gradient of the curve when x = 6?


What is the differential of (14x^3-3x^2)^3


a typical question would be a setof parametric equations y(t) and x(t), asking you to find dy/dx and then the tangent/normal to the curve at a certain point (ie t = 2)


Using the substitution of u=6x+5 find the value of the area under the curve f(x)=(2x-3)(6x+%)^1/2 bounded between x=1 and x=1/2 to 4 decimal places.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning