f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.

f(x)=(12x^2)(e^2x) - 14, so using the chain rule f'(x)=(24x)(e^2x) + (12x^2)(2e^2x).To find the turning points set f'(x)=0, so (24x)(e^2x) + (24x^2)(e^2x) = 0. Thus (24xe^2x)(1+x)=0. Thus x=0 or x=-1.

CH
Answered by Charlotte H. Maths tutor

3030 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of 4(8x+2)^4 at X coordinate 2


4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


How do you integrate the natural logarithm ln(x)?


Differentiate y = (3x^3+2x+7)/x^(1/2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences