Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)

y = 4x3 - 7x -10The gradient of the function at any point can be found using its derivative:dy/dx = 12x2 - 7The gradient of the function, m1, at (2,8) is equal to the gradient of the tangent at that point:m1 = 12(2)2 - 7 = 48 - 7 = 41Since the tangent and normal to a given point are perpendicular, their respective gradients form the equation below:m1m2 = -1, where m2 is the gradient of the normal=> m2 = -1/m1 = -1/41

MP
Answered by Miss P. Maths tutor

5053 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following integral: ∫ arcsin(x)/sqrt(1-x^2) dx


How will you simplify (3 xsquare root of 2) to the square?


Solve the inequality |4x-3|<|2x+1|.


Given that (2x-1) : (x-4) = (16x+1) : (2x-1), find the possible values of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences