Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4

Firstly, to find the stationary points of a curve you must differentiate the equation of the curve. To do this each x component is multiplied by its current power and then the power is decreased by one. Any terms without x are simply removed. This gives dy/dx = 6x^2 - x - 2. For stationary points the derivative is then set equal to 0. In this case to find the x values the derivative should be factorised, giving (2x+1)(3x-2)=0. Each of these can be treated separately as (2x+1)=0 and (3x-2)=0. These can then be rearranged to give x = 1/2 and x = 2/3.

BS
Answered by Bartosz S. Maths tutor

5912 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the turning points of a graph and how do you if the point is a maximum or a minimum?


differentiate parametrically y=3t+4 and x=2t^2 +3t-5


Outline the various ways that you can differentiate a function


A curve C has equation 2^x + y^2 = 2xy. How do I find dy/dx for the curve C?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning