Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4

Firstly, to find the stationary points of a curve you must differentiate the equation of the curve. To do this each x component is multiplied by its current power and then the power is decreased by one. Any terms without x are simply removed. This gives dy/dx = 6x^2 - x - 2. For stationary points the derivative is then set equal to 0. In this case to find the x values the derivative should be factorised, giving (2x+1)(3x-2)=0. Each of these can be treated separately as (2x+1)=0 and (3x-2)=0. These can then be rearranged to give x = 1/2 and x = 2/3.

BS
Answered by Bartosz S. Maths tutor

5161 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal line at the point H, where θ= π/6, on the curve with equations x=3sinθ and y=5cosθ


For which values of k does the quadratic equation 2x^2+kx+3=0 only have one unique solution?


A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.


Solve the following pair of simultaneous equations: 2x - y = 7 and 4x + y = 23


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences