Solve the inequality x^2 - 9 > 0

This is a quadratic inequality, because we have an x2 term, so we answer this question by examining the graph of the associated equation y = x2 - 9, and then find out where this graph is greater than 0.So first, we find where the equation, y = x2 - 9 is equal to zero (i.e. y = 0). This is simply solving a quadratic, which we do by factorising and equating each term in brackets to zero, i.e.:x2 - 9 = 0This is the difference of two squares, so the factorisation should be relatively familiar.(x+3)(x-3) = 0Therefore x= - 3 or x = 3.This tells us that the graph crosses the x-axis at x=3 and x=-3.Then, we need to consider what the rest of the graph looks like. Since the equation y = x2 - 9 has a positive x2 term, this graph must be a positive parabola (U-shape) graph. Putting this all together we can sketch a graph of the equation, and now we look back to our original inequality, which asks for when this graph (when the y-values) are greater than zero. We can see this happens when either x > 3 or when x< -3 and so this is our solution.

RH
Answered by Rose H. Maths tutor

15642 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ((5x^3) + ((2x)^-1) + (e^2x))dx.


What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?


Integrate 1/(1 - 3*x) with respect to x


Differentiate 2^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning