Given that A(sin θ + cos θ) + B(cos θ − sin θ) ≡ 4 sin θ, find the values of the constants A and B.

Since this must be true for all values of θ, and cos and sin are distinct functions, no non-zero multiple of cosθ could ever be equal to 4 sinθ for all values of θ. Therefore, the overall multiple of cosθ on the left-hand-side must be 0.
Therefore, Acosθ + Bcosθ ≡ 0and (A+B) cosθ ≡ 0so A = - B
We can then plug this back into the equation to solve for A:A(sinθ + cosθ) - A(cosθ - sinθ) ≡ 4sinθAsinθ - (-Asinθ) = 4sinθ [the cosθ terms cancel one another out]Asinθ + Asinθ = 4sinθ2A = 4A = 2B = - A = - 2

DB
Answered by David B. Maths tutor

8150 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the minimum and maximum points of the graph y = x^3 - 4x^2 + 4x +3 in the range 0<=x <= 5.


Find the solutions to z^2 = i


Express cos(2x) in terms of acos^2(x) + b


A curve has the equation 2x^2 + xy - y^2 +18 = 0. (1) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning