y = 4(x^3) + 7x ... Find dy/dx

This is a simple differentiation question. To start, you need to know the general method of differentiation. This is:
if y = Axb then dy/dx = (A*b)xb-1
There are two terms to differentiate in this problem, in the first term, you bring down the 3 and multiply it with 4 to get 12. Then reduce the power by one according to the equation. By executing the same method with the second term, you multiply 7 by 1 since the power of x is 1. Then, you once again reduce the power by 1, which causes it to become x0 which is equal to 1. You are therefore left with 7.
Therefore the answer is dy/dx = 12x2 + 7

EE
Answered by Emilio E. Maths tutor

3485 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate terms with sin^2(x) and cos^2(x) in them? For example integrate (1+sin(x))^2 with respect to x


https://1drv.ms/w/s!Ajvn5XL_gYTXgaZeAS-K7z62VSxjYw?e=lnAZLx


Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


How can you remember what sin(x) and cos(x) differentiate or integrate to?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning