How do I use the product rule for differentiation?

You should use the product rule when you have a function f(x), which you can't differentiate straight away. But which can be written in the form f(x)=g(x)h(x), where g(x) and h(x) are functions that you do know how to differentiate. Then f'(x)= g(x)h'(x)+h(x)g'(x). This may seem very abstract but an example will make it clear how to use this in practice. Say we wanted to differentiate f(x)=xex. At first glance this appears difficult. It is not a 'standard' function which we know how to differentiate. But we see if we set g(x)=x and h(x)=ex, that f is of the required form to apply the product rule. Because we know that g'(x)=1, and h'(x)=ex. So applying the product rule we see f'(x)=(1)(ex)+x(ex). Which we can simplify to ex(1+x).

HV
Answered by Harry V. Maths tutor

3036 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C


Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.


A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.


Use integration by parts to find the value of the indefinite integral (1/x^3)lnx ; integration with respect to dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning