How do I use the product rule for differentiation?

You should use the product rule when you have a function f(x), which you can't differentiate straight away. But which can be written in the form f(x)=g(x)h(x), where g(x) and h(x) are functions that you do know how to differentiate. Then f'(x)= g(x)h'(x)+h(x)g'(x). This may seem very abstract but an example will make it clear how to use this in practice. Say we wanted to differentiate f(x)=xex. At first glance this appears difficult. It is not a 'standard' function which we know how to differentiate. But we see if we set g(x)=x and h(x)=ex, that f is of the required form to apply the product rule. Because we know that g'(x)=1, and h'(x)=ex. So applying the product rule we see f'(x)=(1)(ex)+x(ex). Which we can simplify to ex(1+x).

HV
Answered by Harry V. Maths tutor

3010 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For the function f(x) = 4x^3 -3x^2 - 6x, find a) All points where df/dx = 0 and b) State if these points are maximum or minimum points.


How do I find the equation of a tangent to a given point on a curve?


How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


How do I remember what trig functions differentiate to?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning