Find the equation of the tangent to the curve y = 4x^2 (x+3)^5 at the point (-1, 128).

y = 4x2(x+3)5 . Use the product rule to find the first derivative of the curve, 8x(x+3)5 + 20x2(x+3)4 , and substitute x = -1 to find the gradient at the point (-1, 128). This should be 64. Now substitute x = -1 and y = 128 into the equation y = mx + c where m = 64 and c is the unknown y-intercept. Solving the equation shows that c = 192. The equation of the tangent is y = 64x + 192.

JG
Answered by Jack G. Maths tutor

3236 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation x^2 + 2xy – 3y^2 + 16 = 0. Find the coordinates of the points on the curve where dy/dx =0


A circle with center C has equation x^2 + y^2 + 8x - 12y = 12


Find the set of values for which x^2 - 7x - 18 >0


Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences