Use completing the square to find the minimum of y = x^2 - 4x + 8

Remember completing the square gives a result of the form (x+q)2 + p where q and p are numbers
Also q is always half of the x term, which in this case is -4, as such q = -2
Substituting this in, we get (x-2)2 which expands to x2 - 4x + 4. To make this equal to our original equation, we need to add 4, getting us y = (x-2)2 + 4.
As a rule, the minimum point is always x = -q, y = p. Therefore our answer is (2,4)

SD
Answered by Sol D. Maths tutor

2983 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

i) The point A on a graph is (6,-7), and point B is (3,5). Calculate the equation of the straight line that passes through both A and B. ii) Does the line pass through the point C (-2,26)?


Integrate x^2 + 1/ x^3 +3x +2 using limits of 1 and 0


How to find the nth term of a quadratic sequence?


Show that 0.81 reocurring = 9/11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences