If (m+8)(x^2)+m=7-8x has two real roots show that (m+9)(m-8)<0 where m is an arbitrary constant

For this we are going to test our knowledge of discriminats and factorisation. Firstly we will format the equation as (m+8)x2+8x+(m-7)=0From here we can see it takes the form ax2+bx+c, and as we know the equation has two real roots we know that the discriminant D is greater than 0. Therfore b2-4ac>0a=(m+8)    b=8     c=(m-7)82-4(m+8)(m-7)>0   Pluggin in a,b,c64-4(m2+m-54)>0   expanding brackets and squaring 816-(m2+m-54)>0    dividing both sides by a factor of 40>(m2+m-54)-16     moving left handside to right handside by addition / subtraction0>m2+m-72        collecting terms0>(m+9)(m-8)      factorisingWe have now shown that (m+9)(m-8)<0 for the above equation when it has two real roots.

MJ
Answered by Marcus J. Maths tutor

4720 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify and solve for x. log(x+1)+log 5=2. Note, log is the natural log in this case


Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.


You are given the equation y=x^2. Determine whether or not the equation has any maximums or minimums and identify them (whether they are maximums or minimums).


What's the proof for the quadratic formula?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences