How do we differentiate y=a^x when 'a' is an non zero real number

Firstly we must change it into a form we can deal with. To do this we take the natural log (ln) of both sides.ln(y)=ln(ax) ln(y)=x(ln(a))    using our rules of logsFrom here we differentiate. The differential of ln(f(x)) is [(d/dx)f(x)]/f(x)(dy/dx)/y=ln(a)      differentiating from above rule and ln(a) is just a constant so d/dx xln(a)= ln(a)dy/dx=yln(a)    times both sides by ydy/dx=(ax)(ln(a)) subbing in y=ato get dy/dx in terms of x

MJ
Answered by Marcus J. Maths tutor

7667 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate (sinx)^2?


What is the integral of ln(x)? Hint: use parts for this integration


The line L has equation y=5-2x. Find an equation of the line perpendicular to L, which passes through the point P (3,-1).


How do I find the area under a curve between two points?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences