How do we differentiate y=a^x when 'a' is an non zero real number

Firstly we must change it into a form we can deal with. To do this we take the natural log (ln) of both sides.ln(y)=ln(ax) ln(y)=x(ln(a))    using our rules of logsFrom here we differentiate. The differential of ln(f(x)) is [(d/dx)f(x)]/f(x)(dy/dx)/y=ln(a)      differentiating from above rule and ln(a) is just a constant so d/dx xln(a)= ln(a)dy/dx=yln(a)    times both sides by ydy/dx=(ax)(ln(a)) subbing in y=ato get dy/dx in terms of x

MJ
Answered by Marcus J. Maths tutor

7465 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 2/x^3 find and expression for dy/dx


Differentate sin(x^2+1) with respect to x


Turning points of the curve y = (9x^2 +1)/3x+2


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences