Differentiate cos(2x^3)/3x

Using quotient rule y = u/v - dy/dx = (v.du/dx - u.dv/dx)/v2.u = cos(2x3) , a = 2x3. du/da = -sin(a), da/dx = 6x2. From chain rule, we know that du/dx = du/da . da/dx, so du/dx = -6x2sin(2x3). We know that dv/dx = 3. We now have all the necessary terms to configure dy/dx: dy/dx =( 3x . -6x2sin(2x3)-3cos(2x3))/9x2 = (-18x3sin(2x3) - 3cos(2x3))/9x2

CW
Answered by Charlie W. Maths tutor

8987 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the coordinate of where two lines intersect?


Integrate x*cos(x)


Three forces (4i + 7j)N, (pi +5j)N and (-8i+qj) N act on a particle of mass 5 kg to produce an acceleration of (2i - j) m s 2 . No other forces act on the particle. Find the resultant force acting on the particle in terms of p and q. THEN find p and Q


When integrating, why do we add a constant to the resulting equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning