y = Sin(2x)Cos(x). Find dy/dx.

Assume base differentiation knowledge: Sin(x) = Cos(x), Cos(x) = -Sin(x)The question combines the chain and product rule. To begin, start by splitting the equation: Sin(2x)Cos(x) = Sin(2x) x Cos(x)The product rule formula is dy/dx = u(dv/dx) + v(du/dx), where in this case u = Sin(2x) and v = Cos(x).Firstly, work out du/dx: This is done using the chain rule. (The chain rule formula: y = f(g(x)), dy/dx = f'(g(x))g'(x))Use f() = Sin(), g(x) = 2x. f'() = Cos(), and g'(x) = 2. Combining these, you get Cos(2x)(2) = 2Cos(2x).dv/dx is slightly simpler as it does not involve the chain rule. Cos(x) = -Sin(x).Combining these for final values (u, v, du/dx, dv/dx) in the product rule formula gives:(Sin(2x))(-Sin(x)) + (Cos(x))(2Cos(2x)), which simplifies to 2Cos(2x)Cos(x) - Sin(2x)Sin(x).

SC
Answered by Saskya C. Maths tutor

15166 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that 2Sec(x)Cot(x) is identical to 2Cosec(x)


The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


When you are working out dy/dx = 0, why do you do this and what does it mean?


express (1+4(root7)) / (5+2(root7)) as a+b(root7), where a and b are integers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning