Sketch the graph y=-x^3, using this sketch y=-x^(1/3)

The first step in figuring out this question is to first determine what the y=x3 looks like.If you are not already fimilar with this function, you can use some basic principles to find out what it looks like.When x=0 we know y=0 so we know this graph crosses the origin at 0, using this information you can determine that there are 3 roots at 0 because it is (x-0)3 = x3.You also know it goes up quickly and down quickly by determining a few points such as:x=-2 ---> y=-8x=-1 ---> y=-1x=0 ---> y=0x=1 ---> y=1x=2 ---> y=8One you have determined what y=x3 looks like you use graph transformations knowledge to determine the rest.Say y=f(x) then what is y=-f(x)?It is just a reflection in the x axis.The second part of the question requires you to understand that 1/x3 = x1/3 so the two graphs are just each others reciprocals. A reciprocal just means it is a reflection in the line y=x.

DO
Answered by Deloris O. Maths tutor

4254 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


Integrate sinx*ln(cosx) with respect to x.


Integrate natural Log x


Differentiate 3x^(2)+xy+y^(2)=12 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning