When you are working out dy/dx = 0, why do you do this and what does it mean?

It relates back to what we actually mean why we say dy/dx. Simply put, dy/dx means the rate of change of y with respect to the rate of change in x over a infinitely small space of time. Therefore, when we are saying dy/dx is equal to zero, we are saying that the rate of change in the y axis is 0 with respect to the x axis, in other words y is not changing. (I would then put a curve of say y=x^2 to a student and ask them to see if they can work out where dy/dx = 0 is (minimum) and why it was there). Whenever you are saying dy/dx = 0, the curve will be instantly flat, known as stationary points. When looking at other things, this idea of dy/dx can be really useful. For example, if you are to throw a ball in the air, you can work out where the ball is at its highest as dx/dt (velocity) is zero if you just have how the ball changes position with respect to time.

MJ
Answered by Matthew J. Maths tutor

22891 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: y=12x(2x+1)+1/x


Find the finite area enclosed between the curves y=x^2-5x+6 and y=4-x^2


The quadratic equation 2x^2+8x+1=0 has roots a and b. Write down the value of a+b and ab and a^2+b^2.


A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences