n is an integer greater than 1. Prove algebraically that n^2-2-(n-2)^2 is always an even number

We want to show that this gives an even number, so we need to get it into a form that it is 2 multiplied by some positive integer. We start by expanding the (n-2)2 out, remember that (n-2)2=(n-2)(n-2). Then expand the brackets to get (n-2)(n-2)=n2 -4n + 4. We can then sub this back in to our original equation to get n2 - 2 - (n-2)2 = n2 - 2 - (n2 -4n + 4), being careful to keep the part we have substituted in, inside the brackets. Then, we can take this out of the brackets to get n2 - 2 - (n2 -4n + 4) = n2 - 2 - n2 +4n - 4. Then we can collect like terms and cancel out the n2 and -n2 to get n2 - 2 - n2 +4n - 4 = 4n - 6. We then notice that we can factorise 4n-6, as both 4 and 6 are divisible by 2. So we have 4n - 6 = 2(2n-3), which is in the required form, so we have shown n2 - 2 - (n-2)2 is even for all integer n greater than 1. Note that for n greater than 1, (2n-3) is greater than 0, so this always works.

JC
Answered by Jacob C. Maths tutor

24801 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Clare buys some shares for $50x. Later, she sells the shares for $(600 + 5x). She makes a profit of x% (a) Show that x^2 + 90x − 1200 = 0


What is the cosine rule and when can it be used?


Given a spinner divided in 3 sections numbered 1, 2 and 3, and that the arc of section 2 is double that of section one (~57.6 cm), calculate pi to 2 decimal places. The radius of the spinner is 30cm and the angle sub-intended by section 3 is 30 degrees.


Solve 4(x+3)=2x+8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning