n is an integer greater than 1. Prove algebraically that n^2-2-(n-2)^2 is always an even number

We want to show that this gives an even number, so we need to get it into a form that it is 2 multiplied by some positive integer. We start by expanding the (n-2)2 out, remember that (n-2)2=(n-2)(n-2). Then expand the brackets to get (n-2)(n-2)=n2 -4n + 4. We can then sub this back in to our original equation to get n2 - 2 - (n-2)2 = n2 - 2 - (n2 -4n + 4), being careful to keep the part we have substituted in, inside the brackets. Then, we can take this out of the brackets to get n2 - 2 - (n2 -4n + 4) = n2 - 2 - n2 +4n - 4. Then we can collect like terms and cancel out the n2 and -n2 to get n2 - 2 - n2 +4n - 4 = 4n - 6. We then notice that we can factorise 4n-6, as both 4 and 6 are divisible by 2. So we have 4n - 6 = 2(2n-3), which is in the required form, so we have shown n2 - 2 - (n-2)2 is even for all integer n greater than 1. Note that for n greater than 1, (2n-3) is greater than 0, so this always works.

JC
Answered by Jacob C. Maths tutor

26049 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 5 red balls and 7 green balls in a bag. A ball is taken from the bag at random and not replaced. Then a second ball is taken from the bag. What is the probability that the 2 balls are the same colour?


There are 892 litres of oil in Mr Aston’s oil tank. He uses 18.7 litres of oil each day. Estimate the number of days it will take him to use all the oil in the tank.


What is a product of prime factors?


How to find the roots of a Quadratic Equation by Factorising?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning