P (–1, 4) is a point on a circle, centre O which is at the origin. Work out the equation of the tangent to the circle at P. Give your answer in the form y = mx + c

A tangent makes an angle of 90 degrees with the radius of a circle.Using this fact, we find the gradient of the radius going through P = -4Therefore gradient of the tangent to the circle at P is -1/-4 = 1/4Then use equation for a straight line: y - y1 = m(x-x1) where x1 and y1 are the x and y coordinates of P respectively (-1,4)So we get that y = (1/4) x + 17/4

CG
Answered by Charlie G. Maths tutor

9796 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you calculate the area of a circle?


solve the simultaneous equations 3x+7y=18 and 7x+9y=8


a)Work out the total surface area of this cuboid (3cm x 4cm x 2cm). b) The cuboid has density 7g/cm^3, what is the mass of the cuboid?


Solve the simultaneous equations “x^2+y^2=4” and “x=2-y”. What does this tell us about the circle centred on the origin, with radius 2, and the straight line with y-intercept 2 and gradient -1?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning