Use the quotient rule to differentiate: ln(3x)/(e^4x) with respect to x.

Quotient rule: d(u/v)/dx = [(du/dx)v-u(dv/dx)]/v^2
u = ln(3x)
v = e^4x
Find du/dx using chain rule:
u = ln(z) ==> du/dz = 1/z
z = 3x ==> dz/dx = 3
(du/dz)(dz/dx) = 3/z = 3/3x = 1/x
du/dx = 1/x
Find dv/dx
v = e^4x ==> dv/dx = 4e^4x
Plugging into the quotient rule equation:
d(u/v)/dx = [(du/dx)v-u(dv/dx)]/v^2
[(1/x)e^4x - ln(3x)(4e^4x)]/(e^4x)^2
Simplify:
[e^4x ((1/x)- 4ln(3x))]/(e^4x)^2
[(1/x)- 4ln(3x)]/(e^4x)
Final answer: d/dx = [(1/x)- 4ln(3x)]/(e^4x)

HT
Answered by Henry T. Maths tutor

4082 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that the square of an odd integer is odd.


Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.


Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences