Use the quotient rule to differentiate: ln(3x)/(e^4x) with respect to x.

Quotient rule: d(u/v)/dx = [(du/dx)v-u(dv/dx)]/v^2
u = ln(3x)
v = e^4x
Find du/dx using chain rule:
u = ln(z) ==> du/dz = 1/z
z = 3x ==> dz/dx = 3
(du/dz)(dz/dx) = 3/z = 3/3x = 1/x
du/dx = 1/x
Find dv/dx
v = e^4x ==> dv/dx = 4e^4x
Plugging into the quotient rule equation:
d(u/v)/dx = [(du/dx)v-u(dv/dx)]/v^2
[(1/x)e^4x - ln(3x)(4e^4x)]/(e^4x)^2
Simplify:
[e^4x ((1/x)- 4ln(3x))]/(e^4x)^2
[(1/x)- 4ln(3x)]/(e^4x)
Final answer: d/dx = [(1/x)- 4ln(3x)]/(e^4x)

HT
Answered by Henry T. Maths tutor

4345 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = (x^2 + 1)^1/3


Finding the tangent of an equation using implicit differentiation


Given y = 3x^(1/2) - 6x + 4, x > 0. 1) Find the integral of y with respect to x, simplifying each term. 2) Differentiate the equation for y with respect to x.


An arithmetic progression has a tenth term (a10) = 11.1 and a fiftieth term (a50) = 7.1 Find the first term (a) and the common difference (d). Also find the sum of the first fifty terms (Sn50) of the progression.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning