Use the quotient rule to differentiate: ln(3x)/(e^4x) with respect to x.

Quotient rule: d(u/v)/dx = [(du/dx)v-u(dv/dx)]/v^2
u = ln(3x)
v = e^4x
Find du/dx using chain rule:
u = ln(z) ==> du/dz = 1/z
z = 3x ==> dz/dx = 3
(du/dz)(dz/dx) = 3/z = 3/3x = 1/x
du/dx = 1/x
Find dv/dx
v = e^4x ==> dv/dx = 4e^4x
Plugging into the quotient rule equation:
d(u/v)/dx = [(du/dx)v-u(dv/dx)]/v^2
[(1/x)e^4x - ln(3x)(4e^4x)]/(e^4x)^2
Simplify:
[e^4x ((1/x)- 4ln(3x))]/(e^4x)^2
[(1/x)- 4ln(3x)]/(e^4x)
Final answer: d/dx = [(1/x)- 4ln(3x)]/(e^4x)

HT
Answered by Henry T. Maths tutor

4388 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A football is kicked at 30 m/s at an angle of 20° to the horizontal. It travels towards the goal which is 25 m away. The crossbar of the goal is 2.44 m tall. (A) Does the ball go into the goal, hit the crossbar exactly, or go over the top?


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


Find the area enclosed by the curve y = cos(x) * e^x and the x-axis on the interval (-pi/2, pi/2)


A curve with equation y=f(x) passes through the point (1, 4/3). Given that f'(x) = x^3 + 2*x^0.5 + 8, find f(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning