What is the gradient of this curve y=5x^3+6x^2+7x+8 at point x=3?

When differentiating an equation (y) you find the equation of the gradient, called dy/dx. The rule for differentiating a power of x is given below:y=x^n dy/dx= nx^(n-1)Applying this rule to this question you get dy/dx=15x^2+12x+7, this is the equation of the gradient. To find the gradient at x=3, substitute x=3 into dy/dx. This gives the gradient (dy/dx) as 178.

TD
Answered by Tutor179115 D. Maths tutor

4647 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx in terms of t of the parametric equations x=4e^-2t, y=4 - 2e^2t


A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.


What is differentation and how does it work?


Solve the differential equation dx/dt=-6*x , given when t=0 x=7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning