What is the gradient of this curve y=5x^3+6x^2+7x+8 at point x=3?

When differentiating an equation (y) you find the equation of the gradient, called dy/dx. The rule for differentiating a power of x is given below:y=x^n dy/dx= nx^(n-1)Applying this rule to this question you get dy/dx=15x^2+12x+7, this is the equation of the gradient. To find the gradient at x=3, substitute x=3 into dy/dx. This gives the gradient (dy/dx) as 178.

TD
Answered by Tutor179115 D. Maths tutor

4751 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve x^2=3(x-1)^2


Make a the subject of 3(a+4) = ac+5f .


Differentiate x^(1/2)ln(3x) with respect to x.


How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning