What is the gradient of this curve y=5x^3+6x^2+7x+8 at point x=3?

When differentiating an equation (y) you find the equation of the gradient, called dy/dx. The rule for differentiating a power of x is given below:y=x^n dy/dx= nx^(n-1)Applying this rule to this question you get dy/dx=15x^2+12x+7, this is the equation of the gradient. To find the gradient at x=3, substitute x=3 into dy/dx. This gives the gradient (dy/dx) as 178.

TD
Answered by Tutor179115 D. Maths tutor

4747 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


integrate (4cos^4 x -4cos^2x+1)^1/2


In the triangle ABC, AB = 16 cm, AC = 13 cm, angle ABC = 50 and angle BCA= x Find the two possible values for x, giving your answers to one decimal place.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning