a curve is defined by y=2x^2 - 10x +7. point (3, -5) lies on this curve. find the equation of the normal to this curve

equation of tangent is y - y1 = m(x-x1). differentiating y gives us the value of m. so dy/dx = 4x-10. we know x is 3. therefore, dy/dx = m = 2 but we need equation of the normal, which is y-y1=(1/m)(x-x1). 1/m is 1/2. y1 = -5. x1 = 3 putting it all in gives us 2y = x - 13, and that is the equation of the normal to this curve.

HH
Answered by Huy H. Maths tutor

3312 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


Solve the simultaneous equations, 2x+y-5=0 and x^2-y^2=3


Solve the equation 3^(2x+1)=1000


Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning