a curve is defined by y=2x^2 - 10x +7. point (3, -5) lies on this curve. find the equation of the normal to this curve

equation of tangent is y - y1 = m(x-x1). differentiating y gives us the value of m. so dy/dx = 4x-10. we know x is 3. therefore, dy/dx = m = 2 but we need equation of the normal, which is y-y1=(1/m)(x-x1). 1/m is 1/2. y1 = -5. x1 = 3 putting it all in gives us 2y = x - 13, and that is the equation of the normal to this curve.

HH
Answered by Huy H. Maths tutor

3630 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coefficient of the x^2 term in in the expansion of (1+x)^4.


How to complete the square?


Integrate the following function by parts and reduce it to it's simplest form. f(x) = ln(x).


Differentiate 2e^(3x^2+6x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning