a curve is defined by y=2x^2 - 10x +7. point (3, -5) lies on this curve. find the equation of the normal to this curve

equation of tangent is y - y1 = m(x-x1). differentiating y gives us the value of m. so dy/dx = 4x-10. we know x is 3. therefore, dy/dx = m = 2 but we need equation of the normal, which is y-y1=(1/m)(x-x1). 1/m is 1/2. y1 = -5. x1 = 3 putting it all in gives us 2y = x - 13, and that is the equation of the normal to this curve.

HH
Answered by Huy H. Maths tutor

3638 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If a ball is dropped from 6m above the ground, how long does it take to hit the floor and what is its speed at impact (assuming air resistance is negligible)?


"Why is Mathematics important, I wont use any of it when I start work?"


How does one find the equation of a line passing through 2 points of a graph?


If the quadratic equation kx^2+kx+1=0 has no real roots, what values of k are possible?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning