Solve the following simultaneous equations: x^2 + 2y = 9, y = x + 3

When solving simultaneous equations, there are two methods: substitution and elimination. For this question, as one of the equations is a quadratic, the substitution method has to be used. The second equation (y = x + 3) can be used to replace y in the first equation (x^2 + 2y = 9) with x + 3: x^2 + 2(x + 3) = 9 Then we expand the brackets:x^2 + 2x + 6 = 9 Then we subtract 9 from both sides:x^2 + 2x -3 = 0We then factorise this quadratic to get two solutions for x:(x + 3)(x - 1) = 0 x = -3, x = 1Finally, we put the x values back into the equation to get our y values:when x = -3, y= -3 + 3 = 0when x = 1, y = 1 + 3 = 4

CL
Answered by Chloe L. Maths tutor

2961 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you expand out and simply brackets, like the following: (x-3)(x+4)?


Sketching a quadratic


In a triangle ABC, side BC = 8.1 cm, side AC = 7 cm, and angle ACB = 30 degrees. What is the area of the triangle?


Harry mixes white paint and blue paint in the ratio 2:5. He makes a total of 21 litres of paint. How much more blue paint does he need to add to the mixture so that the ratio of white paint to blue paint becomes 1:4?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning