Solve the following simultaneous equations: x^2 + 2y = 9, y = x + 3

When solving simultaneous equations, there are two methods: substitution and elimination. For this question, as one of the equations is a quadratic, the substitution method has to be used. The second equation (y = x + 3) can be used to replace y in the first equation (x^2 + 2y = 9) with x + 3: x^2 + 2(x + 3) = 9 Then we expand the brackets:x^2 + 2x + 6 = 9 Then we subtract 9 from both sides:x^2 + 2x -3 = 0We then factorise this quadratic to get two solutions for x:(x + 3)(x - 1) = 0 x = -3, x = 1Finally, we put the x values back into the equation to get our y values:when x = -3, y= -3 + 3 = 0when x = 1, y = 1 + 3 = 4

CL
Answered by Chloe L. Maths tutor

3113 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation ((2x+3)/(x-4)) - ((2x-8)/(2x+1)) = 1. Give your answer to 2 decimal places.


Given that a = 3 and b = 7 ,  What is the value of 2a + b ?


How do I solve a simple simultaneous equation?


There are a total of 50 apples and pears (apples + pears) in a large basket. If the total number of apples was doubled and the total number of pears was tripled, these two numbers would add up to 130. How many apples and pears are in the basket?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning