Solve the following simultaneous equations: x^2 + 2y = 9, y = x + 3

When solving simultaneous equations, there are two methods: substitution and elimination. For this question, as one of the equations is a quadratic, the substitution method has to be used. The second equation (y = x + 3) can be used to replace y in the first equation (x^2 + 2y = 9) with x + 3: x^2 + 2(x + 3) = 9 Then we expand the brackets:x^2 + 2x + 6 = 9 Then we subtract 9 from both sides:x^2 + 2x -3 = 0We then factorise this quadratic to get two solutions for x:(x + 3)(x - 1) = 0 x = -3, x = 1Finally, we put the x values back into the equation to get our y values:when x = -3, y= -3 + 3 = 0when x = 1, y = 1 + 3 = 4

CL
Answered by Chloe L. Maths tutor

2926 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A triangle has 3 angles of 60 degrees, (5y-40) degrees, and (2y+20) degrees. Show that the triangle is equilateral.


Factorising Quadratics: x ^2 ​​ − x = 12


Expand and simplify 4(x+5) + 3(x-7)


In year 11, 3/7 of pupils go on holiday abroad in the summer break. Out of these, 1/3 go to France. Determine the ratio of pupils who go to France in summer to pupils who do not go to France in summer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences