Using the trigonometric identity for tan(A + B), prove that tan(3x)=(3tan(x)-tan^3(x))/(1-3tan^2(x))

tan(3x)=tan(2x+x), by using the identity for tan(A+B)=(tan(A)+tan(B))/(1-tan(A)tan(B)),tan(3x)=tan(2x+x)=(tan(2x)+tan(x))/(1-tan(2x)tan(x)), using it again for tan(2x),tan(3x)=tan(2x+x)=([(tan(x)+tan(x))/(1-tan(x)tan(x))]+tan(x))/(1-[(tan(x)+tan(x))/(1-tan(x)tan(x))]tan(x))which simplifies to ([2tan(x)/(1-tan2(x))]+tan(x))/(1-[(2tan(x))/(1-tan2(x))]tan(x))which will further simplify to [(3tan(x)+tan3(x))/(1-tan2(x))]/[(1-3tan2(x))/(1-tan2(x))]which yields [3tan(x)+tan3(x)]/[1-3tan2(x)] which is what we got asked
link to resolution on paper: https://imgur.com/a/YUuaop9

IR
Answered by Ivan R. Maths tutor

9765 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate exp(2x)cos(8x) by parts


Find the acute angle between the two lines... l1: r = (4, 28, 4) + λ(-1, -5, 1), l2: r = (5, 3, 1) + μ(3, 0, -4)


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


How do I solve a simultaneous equation in two variables when they have with different coefficients?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning