What is the indefinite integral of xlog(x)?

The integral can be split into two different functions of x which is a hint that we must use the integration by parts method. The method is defined as ∫ uv’ dx = uv - ∫ u’v dx. If we let u = log(x) and v’ = x and then solve for u’ and v such that u’ = 1/x and v = (1/2)x^2 , we can substitute in the values to find the solution. ∫ u’v dx = (1/2)(x^2)log(x) - ∫ (1/x)*((1/2)x^2) dx then goes to u’v dx = (1/2)(x^2)log(x) - ∫ (1/2)x dx which solves asu’v dx = (1/2)(x^2)log(x) - (1/4)x^2 + C and can be simplified to read as u’v dx = (1/4)(x^2)(2log(x) - 1) + C.

WH
Answered by William H. Maths tutor

3948 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

7^6 x 7^3


Core 3 - Modulus: Solve the equation |x-2|=|x+6|.


A curve with equation y = f(x) passes through the point (4,25). Given that f'(x) = (3/8)*x^2 - 10x^(-1/2) + 1, find f(x).


x = t^3 + t, y = t^2 +1, find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences