Answers>Maths>IB>Article

If f(x)=(x^3−2x)^5 , find f'(x).

f(x)=(x3-2x)5
If we look at this function, we can see that it can be split into two functions, one hiding in the other one. Because of that, to solve this problem we will need the Chain rule:
f(g(x))' = f'(g(x)) . g'(x)
If we apply this formula, we can see that f(g(x)) = (x3-2x)5 and that g(x) = x3-2x .
The derivative of (x3-2x)5 is 5(x3-2x)4 And the derivative of x3-2x is 3x2 - 2
If we plug the results back into the chain rule formula, we get the result:
f'(x) = 5(x3-2x)4 . (3x2 - 2)

RS
Answered by Radovan S. Maths tutor

5286 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve: 1/3 x = 1/2 x + (− 4)


A geometric sequence has all its terms positive. The first term is 7 and the third term is 28.


what is the geometrical meaning of the derivative of a function f?


What is the meaning of vector cross product?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning