Answers>Maths>IB>Article

If f(x)=(x^3−2x)^5 , find f'(x).

f(x)=(x3-2x)5
If we look at this function, we can see that it can be split into two functions, one hiding in the other one. Because of that, to solve this problem we will need the Chain rule:
f(g(x))' = f'(g(x)) . g'(x)
If we apply this formula, we can see that f(g(x)) = (x3-2x)5 and that g(x) = x3-2x .
The derivative of (x3-2x)5 is 5(x3-2x)4 And the derivative of x3-2x is 3x2 - 2
If we plug the results back into the chain rule formula, we get the result:
f'(x) = 5(x3-2x)4 . (3x2 - 2)

RS
Answered by Radovan S. Maths tutor

5129 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the differential of y=arcsinx


How to find the derivative of sqrt(x) from first principles?


In Topic 5 (Statistics and Probability) what is the difference between mutually exclusive events and independent events?


Find an antiderivative to the function f(x) = e^x cos(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences