Answers>Maths>IB>Article

If f(x)=(x^3−2x)^5 , find f'(x).

f(x)=(x3-2x)5
If we look at this function, we can see that it can be split into two functions, one hiding in the other one. Because of that, to solve this problem we will need the Chain rule:
f(g(x))' = f'(g(x)) . g'(x)
If we apply this formula, we can see that f(g(x)) = (x3-2x)5 and that g(x) = x3-2x .
The derivative of (x3-2x)5 is 5(x3-2x)4 And the derivative of x3-2x is 3x2 - 2
If we plug the results back into the chain rule formula, we get the result:
f'(x) = 5(x3-2x)4 . (3x2 - 2)

RS
Answered by Radovan S. Maths tutor

5645 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Consider the arithmetic sequence 2, 5, 8, 11, ... a) Find U101 b) Find the value of n so that Un = 152


What is the area enclosed by the functions x^2 and sqrt(x)?


Given the function y=f(x), where f(x)=(e^x-e^(-x))/2, find its inverse f'(x).


Solve the equation log2(x + 3) + log2(x - 3) = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning