Solve the simultaneous equations 6x - 27 = 15 and 4x + 3y = -3.

Initially we have two unknown variables, so we want to eliminate one of the variables (x) to solve for the other (y). The LCM of 6 and 4 is 12, so multiply each equation such that the coefficient of x is 12:2*(6x - 2y = 15) --> 12x - 4y = 303*(4x + 3y = -3) --> 12x + 9y = -9Subtracting equation 2 from equation 1 eliminates the variable x and gives y = -3. This value is then substituted back into one of the original equations to find the value of x. For example:6x - 2(-3) = 156x = 9x = 1.5Therefore, we have our two solutions whereby x = 1.5, y = -3.

AC
Answered by Alannah C. Maths tutor

3565 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are n sweets in a bag. 6 of the sweets are orange. The rest of the sweets are yellow. Hannah takes a random sweet from the bag. She eats the sweet. Hannah then takes at random another sweet from the bag. She eats the sweet. The probability that H


Expand and simplify (x-3)(2x+4y)^2


There are 6 orange sweets and n total sweets in a bag. The probability of picking two sweets one at a time randomly and both being orange is 1/3. Show that n^2 - n - 90 = 0


Maths A Level: "Sketch the curve of the function f(x) = 2x^3 - 2x - 12 and show that the equation f(x)=0 has one root; calculate the root."


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning