(i) Find the gradient of the straight line passing through the points: (0,3) and (9,21). (ii) Write down the equation of the line in form y = mx + c

(i) To find the gradient of a straight light, we take any two (different) points on the straight line and compute the change in Y divided by the change in X. So here this is; (21-3)/(9-0) = 18/9 = 2. So the grandient is +2. (ii) To put the straight line into the form y=mx+c, we first note that 'm' is the gradient, and so is 2. Then, we substitute values for 'y' and 'x' using any one of our points. So at the point '(0,3)' we have x=0 and y=3. So we have 3=0*2 + c, so c =3. Therefore we have y=2x +3!

CG
Answered by Charlie G. Maths tutor

5044 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make x the subject of the following formula: 5(3x -2y) = 14 - 2ax


The width of a Rectangle is 4cm shorter than its length. the rectangle has an area of 32cm2. Calculate its perimeter?


Find the equation of the line passing through the point ( 2, −3) which is parallel to the line with equation y + 4x = 7


How do I solve an equation where there are unknowns on both sides of the equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning