(i) Find the gradient of the straight line passing through the points: (0,3) and (9,21). (ii) Write down the equation of the line in form y = mx + c

(i) To find the gradient of a straight light, we take any two (different) points on the straight line and compute the change in Y divided by the change in X. So here this is; (21-3)/(9-0) = 18/9 = 2. So the grandient is +2. (ii) To put the straight line into the form y=mx+c, we first note that 'm' is the gradient, and so is 2. Then, we substitute values for 'y' and 'x' using any one of our points. So at the point '(0,3)' we have x=0 and y=3. So we have 3=0*2 + c, so c =3. Therefore we have y=2x +3!

CG
Answered by Charlie G. Maths tutor

4766 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you calculate ratios? Example question: 'White paint costs £2.80 per litre, Blue paint costs £3.50 per litre, White paint and blue paint are mixed in the ratio 3:2. Work out the cost of 18 litres of the mixture [4 marks]' AQA Mathematics (8300)


Prove that n(n+5) + 2(n+3) is always a product of two numbers with a difference of 5.


A circular table top has diameter 140 cm. Calculate the area of the table top in cm² , giving your answer as a multiple of π.


Simplify : 3a(b^2) * (a^3)b


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning