(i) Find the gradient of the straight line passing through the points: (0,3) and (9,21). (ii) Write down the equation of the line in form y = mx + c

(i) To find the gradient of a straight light, we take any two (different) points on the straight line and compute the change in Y divided by the change in X. So here this is; (21-3)/(9-0) = 18/9 = 2. So the grandient is +2. (ii) To put the straight line into the form y=mx+c, we first note that 'm' is the gradient, and so is 2. Then, we substitute values for 'y' and 'x' using any one of our points. So at the point '(0,3)' we have x=0 and y=3. So we have 3=0*2 + c, so c =3. Therefore we have y=2x +3!

CG
Answered by Charlie G. Maths tutor

4568 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations: A. 2x-2y=18 and B. 3x+y=23


ABC is an isosceles triangle such that AB = AC A has coordinates (4, 37) B and C lie on the line with equation 3y = 2x + 12 Find an equation of the line of symmetry of triangle ABC. Give your answer in the form px + qy = r where p, q and are integers (5


Sam is a bodybuilder. He currently weighs 90kg, but is aiming to be at 130kg in the next four months. Every month, he puts on 8% of his weight. Does he reach his target?


James buys a new car for £1000. Every year the value of the car decreases by 3%. If James bought the car in 2017 what would the value of the car be in 2021?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences