Solve the following simultaneous equation: y= x^2 - 3x + 4 y - x = 1

When it comes to solving simultaneous equations the way you structure your working out will really help you get to the correct answer. The layout can be used for all simultaneous equations and will make even the more complicated ones seem a lot less daunting. Firstly label the two equations: y= x2 - 3x + 4  (1) and y - x = 1 (2). Substitute (1) into (2). x2 - 3x + 4 - x = 1 This equation becomes (3). Solve (3) by putting all the terms onto one side making sure x2 stays positive to simplify. x2 - 4x + 3 = 0. Now factorise the equation(x-3)(x-1) = 0. Either x - 3 = 0 or x-1=0, therefore x = 3 or x = 1. Now substitute each possible answer into the simplest simultaneous equation which would be (2) to solve for y. When x = 3 y - 3 = 1 y = 4 When x = 1 y - 1 = 1 y = 2.

AP
Answered by Anisha P. Maths tutor

6543 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise and solve x^2 - 8x + 15 = 0


A four sided pyramid, with a vertical height of 10cm and the base 4cmx4cm is placed on the top of a cylinder with radius 1.5cm and a height of 15cm. What is the exposed surface area?


solve (2x+3)/(x-4) - (2x-8)/(2x+1) = 1 leave answer in fraction form


simplfy x/3 + x/4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning