Find the cartesian equation of a curve?

A curve has parametric equations:

x = 2 + t2                           y = 4t

Find the cartesian equation of this curve.

A cartesian equation of a curve is simply finding the single equation of this curve in a standard form where xs and ys are the only variables. 

To find this equation, you need to solve the parametric equations simultaneously:

If y = 4t, then divide both sides by 4 to find (1/4)y = t.

This newly found value of t can be substituted into the equation for x:

x = 2 + (1/4(y))2 - expand the bracket (square both 1/4 and y) to derive x = 2 + 1/16 y2

Technically, this final equation is already in cartesian form as it only includes variables x and y, however to further rearrange the equation to find the standard 'y =' form:

x = 2 + 1/16 y2 (minus 2 from both sides)

x - 2 = 1/16 y2 (multiply each side by 16)

16x - 32 = y2    (and finally take square roots of both sides)

y = SQRT(16x-32)

JF
Answered by James F. Maths tutor

160001 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation x^2 +2xy–3y^2 +16=0. Find the coordinates of the points on the curve where dy/dx = 0.


differentiate parametrically y=3t+4 and x=2t^2 +3t-5


The curve C has an equation y = sin(2x)cos(x)^2. Find dy/dx. Find normal to curve at x = pi/3 rad, giving answer in exact form.


if f(x) = 7x-1 and g(x) = 4/(x-2), solve fg(x) = x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences