Differentiate y=ln(x)+5x^2, and give the equation of the tangent at the point x=1

First differentiate the equation, giving you, y'=(1/x)+10x. To get the gradient at this point of the curve, plug in x=1, to get a y' value of 11, and a y value of 5. From there you can plug these three numbers into the equation y-y1=y'(x-x1) to get the equation for the straight line y=11x-6.

HM
Answered by Harrison M. Maths tutor

3458 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the indefinite integral of xsinx


I don't understand how functions work. How do I decide if something is a function?


The curve C has equation y=(2x-3)^5, the point P lies on C and has coordinates (w, – 32), find (a) the value of w and (b) the equation of the tangent to C at the point P in the form y=mx+c , where m and c are constants.


A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning