Find the coordinates of the stationary points for the curve y = x^4 - 2*x^2 + 5.

First solve to find dy/dx.dy/dx = 4x^3 - 4xThe stationary points occur when dy/dx = 0. Solve the equation to find the values of x for when dy/dx = 0.4x(x^2 - 1) = 0 x = 0, x = 1, x = -1Finally sub in the values of x into the equation for y to find the corresponding y values.y = 5, y = 8, y = 8

MW
Answered by Matthew W. Maths tutor

5692 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using a suitable substitution, or otherwise, find the integral of [x/((7+2*(x^2))^2)].


Consider the unit hyperbola, whose equation is given by x^2 - y^2 = 1. We denote the origin, (0, 0) by O. Choose any point P on the curve, and label its reflection in the x axis P'. Show that the line OP and the tangent line to P' meet at a right angle.


How would I go about solving 3(x-2) = x+7?


Calculate the distance of the centre of mass from AB and ALIH of the uniform lamina.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning