Describe how reduced NADP and ATP is produced during the light-dependent stage of photosynthesis.

ATP is produced during both cyclic and non-cyclic photophosphorylation.During cyclic photophosphorylation, a photon of a wavelength 700nm hits a chlorophyll molecule in PS1 and excites a single electron. As it leaves the molecule, the electron is taken up by an electron acceptor and passed along the electron transport chain to produce ATP. The electron returns to PS1 and can be re-excited.
Non-cyclic photophosphorylation involves both PS1 and PS2. An electron in PS2 is excited by the transfer of energy from photon of wavelength 680nm and travels down the electron transport chain, driving the synthesis of one ATP molecule. This electron replaces a lost electron in PS1. Once again, in PS1 an electron is excited however it is taken up by an electron acceptor NADP. To replace the lost electrons in PS2, photolysis occurs, producing H+ and OH- and electrons. The H+ and the excited electron from PS2 are taken up by NADP to form reduced NADP.

Answered by Harison S. Biology tutor

10813 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

What are oncogenes and how do they relate to tumor formation?


Haemophilia is a disease that affects blood clotting. People with haemophilia are sometimes given a protein called factor VIII. Factor VIII is an enzyme that is involved in the process of blood clotting. Explain how a change in the primary structure of f


How does DNA lead to the production of proteins?


How to we acquire monoclonal antibodies


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy