How do I integrate tan^2 x?

Firstly, use the trigonometric formula tan2x = sec2x - 1, which you can easily derive from sin2x + cos2x =1, by dividing both sides by cos2x and re-arranging. Now, you should remember that differentiating tan x gives sec2x. Therefore, the opposite is true for integration, integrating sec2x gives tan x. Also, differentiating x gives 1, hence, integrating 1 gives x. With this knowledge you can express tan2x as sec2x - 1 and integrate it to give tan x -x +C.

JC
Answered by Jakub C. Maths tutor

8211 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many roots does the equation x^2 = x + 12 have and what are they?


Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


Differentiate with respect to x: y=(6x^2-1)/2sqrt(x)


Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences