A curve has the equation: x^3 - x - y^3 - 20 = 0. Find dy/dx in terms of x and y.

x3 - x - y3 - 20 = 0 Find dy/dx. Differentiate with respect to x.
3x2 - 1 - 3y2(dy/dx) = 0Therefore: dy/dx = (3x2 - 1)/3y2

KP
Answered by Karishma P. Maths tutor

3471 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y = 2e^x -6lnx and passes through the point P with x - coordinate 1. a) Find the equation to the tangent to C at P


How do I evaluate composite functions?


If f(x)=7xe^x, find f'(x)


Given y= sqrt(x) + 4/sqrt(x) + 4 , find dy/dx when x=8 giving your answer in form Asqrt(2) where A is a rational number.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning