A curve has the equation: x^3 - x - y^3 - 20 = 0. Find dy/dx in terms of x and y.

x3 - x - y3 - 20 = 0 Find dy/dx. Differentiate with respect to x.
3x2 - 1 - 3y2(dy/dx) = 0Therefore: dy/dx = (3x2 - 1)/3y2

KP
Answered by Karishma P. Maths tutor

3606 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I express complicated logs as single logarithms?


How do you prove the 1^2 +2^2+.....+n^2 = n/6 (n+1) (2n+1) by induction?


Find the first derivative of 2x^3+5x^2+4x+1 (with respect to x)


Find the equation of the tangent to the curve y = 4x^2 (x+3)^5 at the point (-1, 128).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning