Find the coordinate of the stationary point on the curve y = 2x^2 + 4x - 5.

The important point in the question is the term 'stationary point'. This is where the graph of y will 'flattern out'. If we look at this graph, we can say that the gradient is equal to 0 at this point. Therefore, dy/dx = 0. dy/dx = 4x +4 = 0. Therefore, x = -1. Plug this value back into y to get y = 2(-1)^2 + 4(-1) - 5 = -7. So the coordinate of the stationary point will be at (-1,-7).

SM
Answered by Serkan M. Maths tutor

4707 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the sum, chain and product rules, differentiate the function f(x) = x^n +x^3 * sin(1/[3x])


How to integrate by parts


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


Intergrate 8x^3 + 6x^(1/2) -5 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences