Express (4x)/(x^2-9) - (2)/(x+3) as a single fraction in its simplest form.

First we must expand the demoninator to; (x+3)(x-3)Then we can multiply the left hand fraction on top and bottom by (x-3) to get a common demoninatorthis gives us; (4x)/((x+3)(x-3)) - ((2)(x-3))/((x+3)(x-3))simplyfy the top to get; (2x+6)/((x+3)(x-3))the numerator then can be expanded to give; (2(x+3))/((x+3)(x-3))The (x+3) cancels on top and bottom to give us the final answer; 2/(x-3)

EE
Answered by Eddie E. Maths tutor

4178 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area enclosed between the curves y = f(x) and y = g(x)


Solve the differential equation: dy/dx = 6x^2 + 4x + 9


The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


What is the integral of (6x^2 + 2/x^2 + 5) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning