Express (4x)/(x^2-9) - (2)/(x+3) as a single fraction in its simplest form.

First we must expand the demoninator to; (x+3)(x-3)Then we can multiply the left hand fraction on top and bottom by (x-3) to get a common demoninatorthis gives us; (4x)/((x+3)(x-3)) - ((2)(x-3))/((x+3)(x-3))simplyfy the top to get; (2x+6)/((x+3)(x-3))the numerator then can be expanded to give; (2(x+3))/((x+3)(x-3))The (x+3) cancels on top and bottom to give us the final answer; 2/(x-3)

EE
Answered by Eddie E. Maths tutor

4094 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I multiply complex numbers?


The lines y = 3x² - x + 5/2 intersects the line y = x/2 +7 at two points. Give their coordinates. Show your working


Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?


Differentiate y = x^3− 5x^2 + 3x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning