Express (4x)/(x^2-9) - (2)/(x+3) as a single fraction in its simplest form.

First we must expand the demoninator to; (x+3)(x-3)Then we can multiply the left hand fraction on top and bottom by (x-3) to get a common demoninatorthis gives us; (4x)/((x+3)(x-3)) - ((2)(x-3))/((x+3)(x-3))simplyfy the top to get; (2x+6)/((x+3)(x-3))the numerator then can be expanded to give; (2(x+3))/((x+3)(x-3))The (x+3) cancels on top and bottom to give us the final answer; 2/(x-3)

EE
Answered by Eddie E. Maths tutor

3866 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A girl kicks a ball at a horizontal speed of 15ms^1 off of a ledge 20m above the ground. What is the horizontal displacement of the ball when it hits the ground?


differentiate y=(4x^3)-5/x^2


Why does a 'many to one' function not have an inverse?


Find the coordinates of the point of intersection of the lines 2x + 5y = 5 and x − 2y = 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences