Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2

First, use the identity cos(2x)=(cos(x))^2-(sin(x))^2 along with the identity (sin(x))^2+(cos(x))^2=1 to obtain the integral of 1/2*(1-cos(2x)) as it is not possible to integrate (sin(x))^2 straight off with a substitution of u=sin(x). Integrating this gives 1/2*(x+2sin(2x)) between x=pi/2 and x=0Evaluating this gives 1/2*(pi/2 +2sin(pi)-0-2sin(0)). Since sin(pi) and sin(0) are both equal to zero, this yields the answer pi/4. Hence the area is pi/4 units^2.

TL
Answered by Thomas L. Maths tutor

4691 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x+3y+3=0. The line AB is parallel to the line with equation y=mx+7 . Find the value of m.


Show that sqrt(27) + sqrt(192) = a*sqrt(b), where a and b are prime numbers to be determined


The normal to the curve C when x=1 intersects the curve at point P. If C is given by f(x)=2x^2+5x-3, find the coordinates of P


The variable x=t^2 and the variable y=2t. What is dy/dx in terms of t?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning