Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0

This question requires integration since the area under the curve is equal to the integral between these bounds. Initially let u=3x-2 and differentiate with respect to x so then du/dx = 3. Rearrange to dx =du/3 and substitute this and u into the original integral. Then change the limits by substituting in x=2 for the upper limit and x=1 for the lower limit into u=3x-2. The new limits are then 4 ( for the upper ) and 1 (for the lower ). The integral is now : (u^-0.5)/3 du between limits u=4 and u=1. Integrating this gives [(2u^0.5)/3] (by 'adding one to the power and dividing by this new power'). Substitute in the calculated limits and subtract the upper from the lower limit as shown: (2(4)^0.5)/3 =4/3, (2(1)^0.5)/3 = 2/3, 4/3 -2/3 = 2/3. This gives a final area of 2/3 square units.

CT
Answered by Callum T. Maths tutor

3331 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I struggle to simplify the following equation: (see answer)


differentiate the function (x^2 +5/x + 3) with respect to x


The first term of an arithmetic series is a and the common difference is d. The 12th term is 66.5 and the 19th term is 98. Write down two equations in a and d then solve these simultaneous equations to find a and d.


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning