Given two functions x = at^3 and y = 4a, find dy/dx

Solution: Parametric Differentiation with utilisation of Chain Rule.
By the chain rule: dy/dx = dy/dt * dt/dx
Note: dt/dx = 1 / (dx/dt)
So dy/dt = 0, dx/dt = 3at^2
So dy/dx = 0 * 1/(3at^2) and hence dy/dx = 0.

MP
Answered by Michele P. Maths tutor

3667 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 8/((root3) -1)) in the form a(root3) +b, where a and b are integers.


Rewrite (2+(12)^(1/2))/(2+3^(1/2)) in the form a+b((c)^(1/2))


What is Bayes' rule and why is it useful?


June 2008 C1 Paper Differentiation Question


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning