Where does the circle (x-6)^2+(y-7)^2=4 intersect with y=x+3

Where does the circle (x-6)2+(y-7)2=4 intersect with y=x+3We need to sub y=x+3 into the circle equation giving us an equation in just x:(x-6)2+(x-4)2=4Next we expand out the brackets:x2 -12x+36+x2-8x+16=4Next collect the terms:2x2-20x+48=0Next we need to factorise to solve for x:2(x2-10x+24)=2(x-6)(x-4)=0this gives us x solutions of x=6 and x=4Now we need to sub these back into y=x+3 to get the y coordinates.This gives y=9 and y=7The overall answer:The circle and the line given intersect at the points (6,9) and (4,7)

NL
Answered by Nicola L. Maths tutor

3019 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the function f(x)=ax^2+bx+c, we are given that it has x-intercepts at (0,0) and (8,0) and a tangent with slope=16 at the point x=2. Find the value of a,b, and c.


Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square


If I am given a line, how do I find a line that is parallel to it? What about perpendicular?


A stone was thrown with velocity 20m/s at an angle of 30 degrees from a height h. The stone moves under gravity freely and reaches the floor 5s after thrown. a) Find H, b)the horizontal distance covered


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences