Solve, by method of substitution, the simultaneous equations: 5x+y=22 2x+y=10

Solve by substitution:5x + y = 22 (1)2x + y = 10 (2)
First let us label the equations 1 and 2. In order to solve this set of equations we need to rearrange one of the equations so that we have one of the variables (x or y) equal to some expression, or in other words we need to make one of the variable the subject.
I am going to make y the subject in equation (1).
5x + y = 22 -5 -5 (we subtract 5 from both sides)
y= 22 -5x I'll call this equation (3).
So now I substitute (3) into (2) to get:
2x + (22 -5x) = 10
Rearrange to make x the subject:
22 -3x =103x = 12x = 4
Now we sub x=4 into equation (1).
5(4) + y = 2220 + y = 22y = 2
Answer x=4 y=2



AW
Answered by Amy W. Maths tutor

4738 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Line segment AB is drawn between point A(-3, 3) and point B(-1, -1). Work out the gradient of the line segment AB, then find the equation of the graph.


2x^2-7x+3=0, solve the following for the two solutions of x


How to solve the following for x: (2x+3)/(x-4) - (2x-8)(2x+1) = 1


Alice will play 2 games of tennis against Bob. Alice’s chances of winning each game is 0.7. Work out the probability of Alice winning exactly one match.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences