Solve, by method of substitution, the simultaneous equations: 5x+y=22 2x+y=10

Solve by substitution:5x + y = 22 (1)2x + y = 10 (2)
First let us label the equations 1 and 2. In order to solve this set of equations we need to rearrange one of the equations so that we have one of the variables (x or y) equal to some expression, or in other words we need to make one of the variable the subject.
I am going to make y the subject in equation (1).
5x + y = 22 -5 -5 (we subtract 5 from both sides)
y= 22 -5x I'll call this equation (3).
So now I substitute (3) into (2) to get:
2x + (22 -5x) = 10
Rearrange to make x the subject:
22 -3x =103x = 12x = 4
Now we sub x=4 into equation (1).
5(4) + y = 2220 + y = 22y = 2
Answer x=4 y=2



AW
Answered by Amy W. Maths tutor

4975 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f(x)=2x^2 -8 What is the value of x if f(x)=0, x>0


Raya buys a van for £8500 plus VAT at 20%. Raya pays a deposit for the van. She then pays the rest of the cost in 12 equal payments of £531.25 each month. Find the ratio of the deposit Raya pays to the total of the 12 equal payments.


Find the value of 'x' and state which angle on triangle ABC is smallest. A = right angle, B = 2x + 30, C = 2x


How do you use Substitution to solve simultaneous equations?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning