Solve, by method of substitution, the simultaneous equations: 5x+y=22 2x+y=10

Solve by substitution:5x + y = 22 (1)2x + y = 10 (2)
First let us label the equations 1 and 2. In order to solve this set of equations we need to rearrange one of the equations so that we have one of the variables (x or y) equal to some expression, or in other words we need to make one of the variable the subject.
I am going to make y the subject in equation (1).
5x + y = 22 -5 -5 (we subtract 5 from both sides)
y= 22 -5x I'll call this equation (3).
So now I substitute (3) into (2) to get:
2x + (22 -5x) = 10
Rearrange to make x the subject:
22 -3x =103x = 12x = 4
Now we sub x=4 into equation (1).
5(4) + y = 2220 + y = 22y = 2
Answer x=4 y=2



AW
Answered by Amy W. Maths tutor

4993 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Line Q goes through (0,5) and (4,7). Find the equation of Line Q in the form y = mx + c


The probability a student in a school wears glasses is 3/7. There are 164 students who DON'T wear glasses. Find the number that wear glasses.


Solve the simultaneous equation: 3x-12y=6 , 18y=9x+10y


Solve the equation: x^2 +8x + 12 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning