Find the coordinates of the points where the lines y=x^2-5x+6 and y=x-4 intersect.

At the points of intersection the x and y coordinates will be the same. So we can solve the equations simultaneously to see what solutions to x and y solve both equations.Rearrange the second equation to get y=x+4, then set the two equations for y equal to each other.We get x^2-5x+6 = x+4.Rearrange this to get x^2-5x+6=0. So to factorise this we need two number which add to make -5, and multiply to make 6. Here -2 and -3 work, so we get (x-2)(x-3)=0.Solving this gives us x=2 or x=3.We can substitute these values into either of our original equations to obtain the corresponding y values. If x=2, y=x-4 = -2, or if x=3, y = x-4 = -1. So our solutions are (2, -2) and (3,-1). We can check these by substituting them into our other original equation to see if they are solutions... they are!

GC
Answered by Georgia C. Maths tutor

5012 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 3^(-3/2) = a* 3^(1/2), find the exact value of a.


Find the derivative of the following expression: y=x^3+2x^2+6x+5.


Find the equation of the tangent to the curve y=3x^3+x^2+5 at the point (1,9)


A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences