When do two simultaneous equations have a solution?

This question was put to someone during their teacher training. This is a good question to ask, it is very important in maths to know that something you intend to study does actually exist. To explain the question we look at an example.Suppose that we have simultaneous equations x+2y=0 (1) 3x+4y=0 (2) A solution to these equations means values of x and y that when substituted into (1) and (2) satisfy the equations.Notice that if x=0 and y=0 then the equations are satisfied. The question is are there any other solutions, any other values of x and y that satisfy the equations?The answer is no in this case, and there is a simple method to check. If we have two equations like (1) and (2), we multiply the numbers in front of x and y in opposing equations and subtract the result. For (1) and (2) we would have 14=4 and 23=6 Then the number we want is 4-6=-2. This is the number that is important. It is not zero, so there are no solutions other than x=0, y=0 to the equations. Another example: Are there solutions other than x=0, y=0 to the equations below? 4x+7y=0 (3) 5x+9y=0 (4) The number we need to find in this case is then 49-57=36-35=1. This is not zero, so there are no other solutions. This method applies to all equations that look like ax+by=0 cx+dy=0 where a, b, c, and d are just numbers. If ad-bc is not zero, then there are no solutions to these equations other than x=0, y=0.It is very important to remember that if we had equations like 3x+4y=2 and 5x+6y=5 we could not apply this method, because x=0, y=0 is not even a solution in this case.

DD
Answered by Dylan D. Maths tutor

2849 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write 2x^2 - 16x + 6 in the form a(x + b)^2 + c where a, b and c are constants to be determined.


Given that your grade for your computing is based on 5 coursework that weigh differently, and you know the results of 4: 80, 75, 50 and 90 which weighs 10%, 20%, 45% and 5%. What grade do you need in your last coursework to achieve at least a B (70%)?


Can you derive the Quadratic Formula?


(x+2)/(x-3) - (x-1)/(x+3) can be written in the form (ax+b)/(x^2-9). Work out the value of a and the value of b.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning