Solve the following equation: (3(x-6) - 81)/4x = 0

The first step is to realise that a trivial solution of x is x = 0, which can be determined from the '4x' denominator. Now zooming in on the numerator and expanding gives us '3x^2 - 18 - 81'. Looking at the coefficients a factor of 3 can be taken out, leaving us with 'x^2 - 6 - 27'.Thinking of numbers that multiply to -27 and add to -6, the 27 immediately highlights that these will be some combination of 9 and 3. It is now apparent that the solution to this problem is in the form of (x-9)(x+3), giving x = 9, -3 or 0

HP
Answered by Harry P. Maths tutor

3203 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Denise buys 5 apples and 3 bananas for £3.15. A banana costs 25p more than an apple. How much would it cost to buy 4 apples and 2 bananas?


Find the value of x: 2x^2 - 3x - 4 = 1


The equation of the line L1 is: y = 5x-4. The equation for line L2 is 2y-10x+16 = 0. Show that these two lines are parallel.


What are the external angles of a regular hexagon?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning