If f(x)=(4x^2)-(8x)+3, find the gradient of y=f(x) at the point (0.5,0)

When you see the question asking you to find the gradient at a point in the curve, the first thing you have to do is differentiate. This is because when we differentiate, we find the equation of the tangent to the curve at that point, which is the same as the gradient. So for this equation, we can differentiate by using the main differentiation rule which is when y=xn, dy/dx=nxn-1. Using this we will get: dy/dx= f'(x) =(4x2)x(2-1)-(8x1)x(1-1)+(3x0)x(0-1) = 8x-8We then substitute in the point (0.5,0) where x=0.5 to get: f'(0.5)=-4The gradient at the point (0.5,0) is equal to -4.

GK
Answered by Girthanaah K. Maths tutor

6221 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.


Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.


Integrate ln(x) wrt dx


Show that x^2 - 8x +17 <0 for all real values of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences