Differentiate y = (x^2 + 1)^1/3

Use the chain rule to do this. First set u= x^2 + 1. We chose u to be this because u1/3 is much simpler to differentiate. Then find du/dx = 2x. Now find dy/du = 1/3 * u-2/3 = 1/3 * (x2 +1)-2/3. Now by the chain rule, dy/dx = dy/du * du/dx. Therefore dy/ dx = 2x * (1/3 * (x2 +1)-2/3 )= 2x/3 * (x2+1)-2/3

WW
Answered by Will W. Maths tutor

3061 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area between the curves C_1, C_2 and the lines x=0 and x=1, where C_1 is the curve y = x^2 and C_2 is the curve y = x^3.


A mass of 3kg rests on a rough plane inclined at 60 degrees to the horizontal. The coefficient of friction is 1/5. Find the force P acting parallel to the plane applied to the mass, in order to just prevent motion down the plane.


Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.


Prove that (1-cos2x)/sin(2x) = tan(x) where x ≠ nπ/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences