Differentiate y = (x^2 + 1)^1/3

Use the chain rule to do this. First set u= x^2 + 1. We chose u to be this because u1/3 is much simpler to differentiate. Then find du/dx = 2x. Now find dy/du = 1/3 * u-2/3 = 1/3 * (x2 +1)-2/3. Now by the chain rule, dy/dx = dy/du * du/dx. Therefore dy/ dx = 2x * (1/3 * (x2 +1)-2/3 )= 2x/3 * (x2+1)-2/3

WW
Answered by Will W. Maths tutor

3339 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate by parts the following function: ln(x)/x^3


Find the inverse of the matrix C=(1,2;4,9)


Prove that the d(tan(x))/dx is equal to sec^2(x).


Differentiating equations of the type ln[f(x)]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning