Differentiate y = (x^2 + 1)^1/3

Use the chain rule to do this. First set u= x^2 + 1. We chose u to be this because u1/3 is much simpler to differentiate. Then find du/dx = 2x. Now find dy/du = 1/3 * u-2/3 = 1/3 * (x2 +1)-2/3. Now by the chain rule, dy/dx = dy/du * du/dx. Therefore dy/ dx = 2x * (1/3 * (x2 +1)-2/3 )= 2x/3 * (x2+1)-2/3

WW
Answered by Will W. Maths tutor

3026 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ln(x).


A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


solve the inequality x^2+4x-21>0


Differentiate y=(x-1)^4 with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences