Differentiate y = (x^2 + 1)^1/3

Use the chain rule to do this. First set u= x^2 + 1. We chose u to be this because u1/3 is much simpler to differentiate. Then find du/dx = 2x. Now find dy/du = 1/3 * u-2/3 = 1/3 * (x2 +1)-2/3. Now by the chain rule, dy/dx = dy/du * du/dx. Therefore dy/ dx = 2x * (1/3 * (x2 +1)-2/3 )= 2x/3 * (x2+1)-2/3

WW
Answered by Will W. Maths tutor

3182 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral between 0 and pi/2 of cos(x)sin^2(x)


how do you do binomial expansion when the power is a negative


Find CO-Ordinates of intersection of 2x+3y=12 and y=7-3x


A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences